首页> 外文OA文献 >Dynamics Underlying the Gaussian Distribution of the Classical Harmonic Oscillator in Zero-Point Radiation
【2h】

Dynamics Underlying the Gaussian Distribution of the Classical Harmonic Oscillator in Zero-Point Radiation

机译:零点辐射下经典谐振子高斯分布的动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stochastic electrodynamics (SED) predicts a Gaussian probability distribution for a classical harmonic oscillator in the vacuum field. This probability distribution is identical to that of the ground state quantum harmonic oscillator. Thus, the Heisenberg minimum uncertainty relation is recovered in SED. To understand the dynamics that give rise to the uncertainty relation and the Gaussian probability distribution, we perform a numerical simulation and follow the motion of the oscillator. The dynamical information obtained through the simulation provides insight to the connection between the classic double-peak probability distribution and the Gaussian probability distribution. A main objective for SED research is to establish to what extent the results of quantum mechanics can be obtained. The present simulation method can be applied to other physical systems, and it may assist in evaluating the validity range of SED.
机译:随机电动力学(SED)预测真空场中经典谐波振荡器的高斯概率分布。该概率分布与基态量子谐波振荡器的概率分布相同。因此,在SED中恢复了海森堡最小不确定性关系。为了理解引起不确定性关系和高斯概率分布的动力学,我们执行了数值模拟并跟随振荡器的运动。通过仿真获得的动态信息为经典双峰概率分布与高斯概率分布之间的联系提供了见识。 SED研究的主要目标是确定在多大程度上可以获得量子力学的结果。本仿真方法可以应用于其他物理系统,可以帮助评估SED的有效范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号